A discontinuous Galerkin method to solve Liouville’s equation of geometrical optics

نویسندگان

چکیده

We present an alternative method to ray tracing that is based on a phase space description of light propagation. Liouville’s equation geometrical optics describes the evolution basic luminance space. At optical interface, laws describe non-local boundary conditions for luminance. A discontinuous Galerkin employed solve dielectric total internal reflection concentrator.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Discontinuous Galerkin Method for the Plate Equation

We present a discontinuous Galerkin method for the plate problem. The method employs a discontinuous approximation space allowing, non matching grids and diierent types of approximation spaces. Continuity is enforced weakly through the vari-ational form. Discrete approximations of the normal and twisting moments and the transversal force, which satisfy the equilibrium condition on an element le...

متن کامل

A discontinuous Galerkin method for the Cahn-Hilliard equation

A discontinuous Galerkin finite element method has been developed to treat the high-order spatial derivatives appearing in the Cahn–Hilliard equation. The Cahn–Hilliard equation is a fourth-order nonlinear parabolic partial differential equation, originally proposed to model phase segregation of binary alloys. The developed discontinuous Galerkin approach avoids the need for mixed finite elemen...

متن کامل

A Conservative Discontinuous Galerkin Method for the Degasperis–procesi Equation

In this work, we design, analyze and test a conservative discontinuous Galerkin method for solving the Degasperis–Procesi equation. This model is integrable and admits possibly discontinuous solutions, and therefore suitable for modeling both short wave breaking and long wave propagation phenomena. The proposed numerical method is high order accurate, and preserves two invariants, mass and ener...

متن کامل

A local discontinuous Galerkin method for the Burgers-Poisson equation

In this work, we design, analyze and test a local discontinuous Galerkin method for solving the Burgers–Poisson equation. This model, proposed by Whitham [Linear and Nonlinear Waves, John Wiley & Sons, New York, 1974] as a simplified model for shallow water waves, admits conservation of both momentum and energy as two invariants. The proposed numerical method is high order accurate and preserve...

متن کامل

A Local Discontinuous Galerkin Method for the Camassa-Holm Equation

In this paper, we develop, analyze and test a local discontinuous Galerkin (LDG) method for solving the Camassa-Holm equation which contains nonlinear high order derivatives. The LDG method has the flexibility for arbitrary h and p adaptivity. We prove the L2 stability for general solutions and give a detailed error estimate for smooth solutions, and provide numerical simulation results for dif...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Epj Web of Conferences

سال: 2022

ISSN: ['2101-6275', '2100-014X']

DOI: https://doi.org/10.1051/epjconf/202226602005